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A B S T R A C T   

Using the formal framework of the Free Energy Principle, we show how generic thermodynamic requirements on 
bidirectional information exchange between a system and its environment can generate complexity. This leads to 
the emergence of hierarchical computational architectures in systems that operate sufficiently far from thermal 
equilibrium. In this setting, the environment of any system increases its ability to predict system behavior by 
“engineering” the system towards increased morphological complexity and hence larger-scale, more macroscopic 
behaviors. When seen in this light, regulative development becomes an environmentally-driven process in which 
“parts” are assembled to produce a system with predictable behavior. We suggest on this basis that life is 
thermodynamically favorable and that, when designing artificial living systems, human engineers are acting like 
a generic “environment”.   

1. Introduction 

Living systems are hierarchical arrangements of components that, 
critically, exhibit a multiscale competency architecture (MCA; Levin, 
2022; Clawson and Levin, 2022). In an MCA, components at each scale 
are competent to perform the functions appropriate to that scale without 
explicit top-down instructions. Human cells, for example, do not have to 
be told how to divide by the brain, or by any larger-scale system; they 
are competent to divide on their own. At any scale j in an MCA, the 
behaviors of the components at the lower scale j − 1 provide enabling 
mechanisms for j-appropriate behaviors, while the behaviors of the 
components at the higher scale j + 1 impose boundary conditions. As the 
boundary conditions effectively constrain the possibility space at scale j, 
state changes at scale j + 1 can modulate or deform the possibility space 
at scale j, providing a source of top-down novelty. Cell division, for 
example, is enabled by gene expression within the cell, and constrained 
by signaling from, or transmitted via, the surrounding multicellular 
tissue. Top-down “instructions” from the surrounding, or even distal 
(McMillan et al., 2021), tissue can increase or decrease the rate of cell 
division, e.g. during wound healing; other examples include the mod-
ulation of cancer cell properties by the microenvironment (Bissell et al., 
2002; Ingber, 2008; Bizzarri and Cucina, 2014), control of stem cell fate 
by large-scale axial patterning cues during regeneration (Durant et al., 

2017), and local remodeling of a structure based on its larger anatomical 
context (Farinella-Ferruzza, 1956). 

Such upward flows of enabling mechanisms and downward flows of 
constraining boundary conditions have been identified as characteristic 
of living systems by Polanyi (1968), Rosen (1986), Pezzulo and Levin 
(2016), and by us (Fields and Levin, 2020a) among others. In the lan-
guage of cognitive or computer science, an MCA encapsulates the 
competencies required for scale-appropriate behaviors. Such 
scale-specific encoding avoids, in particular, “micromanagement” in the 
form of explicit top-down directives for each step of a complex, 
lower-level competency. The automatization of processes such as 
first-language understanding and production – and of many skills that 
initially require explicit rule learning (Bargh and Ferguson, 2000) – 
provides a familiar example. Scale-specific encapsulation of compe-
tencies allows processes specific to each scale to function as virtual 
machines (Smith and Nair, 2005), independently of the implementations 
of either lower- or higher-scale components. Such 
implementation-independence opens up the possibility of “mix and 
match” systems that combine evolved biological, engineered biological, 
and artificial components in almost arbitrary ways (Levin, 2022; 
Clawson and Levin, 2022). 

Making the idea of an MCA precise requires having a precise 
formulation of what counts as a “competence.” To develop a fully- 
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precise formulation of competence, we turn to the variational Free En-
ergy Principle (FEP). The FEP was first introduced as a theory of brain 
function (Friston, 2005, 2010; Friston et al., 2006), was subsequently 
developed into a theoretical framework for modeling living systems 
(Friston, 2013; Friston et al., 2017; Ramstead et al., 2019; Kuchling 
et al., 2020), and more recently, extended into a framework for 
modeling any physical system that remains distinguishable from its 
environment over some time period of interest (Friston, 2019; Ramstead 
et al., 2022). These formulations employ the classical theory of random 
dynamical systems; expressed in this way, the FEP is a classical 
least-action principle. In this classical setting, distinguishability between 
the system of interest and its environment is assured by requiring that 
the two be separated by a Markov blanket (MB; Pearl, 1988; Clark, 
2017), as discussed in §2.1 below. Using quantum information-theoretic 
methods, the MB condition can be further generalized to the condition of 
separability, the requirement that the joint system-environment state 
can be factored into independently-specifiable system and environment 
states. Separability is both necessary and sufficient for an effectively 
classical interaction between the system and its environment (Fields and 
Glazebrook, 2020; Fields and Marcianò, 2020; Fields, Glazebrook and 
Marcianò, 2021). In this quantum-information formulation, minimizing 
VFE optimizes the interface between two computational processes, one 
implemented by the system and the other by its environment (Fields 
et al., 2022). In addition, as discussed in §2.2 below, the FEP emerges as 
the classical limit of the Principle of Unitary, i.e. the Principle of Con-
servation of Information. 

In the context of the FEP, a system is “competent” if and only if it is 
able to maintain its distinguishability from its environment over the 
time period of interest by maintaining the functional integrity of its MB 
(or in quantum terms, its separability from its environment). As dis-
cussed in §2.1, a system’s competency is measured by its ability to 
minimize a variational free energy (VFE) that is defined at its MB. In this 
case, VFE is effectively an uncertainty about what its environment will 
do next. In other words, highly competent systems are highly competent 
at both predicting what their environments will do next, and responding 
to their environments’ behaviors in a way that preserves their predictive 
power. Friston (2019) refers to such systems as both self-organizing and 
“self-evidencing,” i.e. as continually generating evidence of their own 
continuing existence. 

By providing a scale-free, effectively thermodynamic definition of 
competence, the FEP enables a scale-free biology that treats evolution 
and development as manifestations (albeit at different levels of organi-
zation) of a single process – VFE minimization (Fields and Levin, 2020a, 
2020b). It is natural to extend this conception of biology to encompass 
biologically-relevant prebiotic, abiotic, or exobiotic processes, including 
those invoked in origin of life and artificial life scenarios. To investigate 
the definition of “competence” provided by the FEP in this larger 
context, we will focus, in particular, on two kinds of biological 
self-organization: 

Regulative development: Using information available from their 
surrounding environment(s), some number of cells self-organize into 
a multicellular organism. In both embryonic development and 
regeneration, such regulated self-organization enables multicellular 
systems to reach “normal” target morphologies despite significant 
perturbations or altered starting conditions (Birnbaum and Alvar-
ado, 2008; Levin, 2011; Vandenberg et al., 2012; Lobo et al., 2014; 
Pezzulo and Levin, 2016; Pinet and McLaughlin, 2019; Fields and 
Levin, 2020b). Such processes are also employed by heterogeneous, 
facultative multicellular systems like microbial mats. 

Ab initio self organization: Some number of molecules self-organize 
into a cell. The result could also be a self-sustaining proto-cell as in 
some origin-of-life models. 

Regulative development has been studied for over two centuries, and 
many model systems are now understood at a substantial level of detail 

including, in several cases, cell-specific gene expression profiles (Tintori 
et al., 2016; Farnsworth et al., 2020; Wang et al., 2022). Examples of ab 
initio self-organization, on the other hand, remain hypothetical. While a 
variety of models have been proposed, mostly in an origin-of-life 
context, none have been fully implemented experimentally and there 
is little consensus even about biological plausibility. The goal of any 
scale-free explanation is to tell exactly the same kind of story about these 
two examples. Constructing such an explanation by requiring examples 
of ab initio self-organization to be both formal and mechanistic analogs 
of regulative development raises a number of issues, mainly concerning 
the structure and role of the “environment” in ab initio self-organization, 
that have been relatively neglected by previous approaches. 

In particular, we will see that treating ab initio self-organization as an 
analog of regulative development challenges two deeply-entrenched 
ideas. First, it questions the near-universal assumption that any ab ini-
tio model must result in a self-replicating system. Evolutionary models 
from Darwin onwards have strongly coupled variation with inheritance 
via either meiotic or mitotic cell division (Monod, 1972; Szathmáry and 
Maynard Smith, 1995; Michod, 1999). Natural selection acts on vari-
ants, and hence depends on Darwinian models of reproduction. Such 
models suggest ab initio processes that involve self-replicating molecules 
immediately. We will suggest that models in which the needed “parts” 
are generated by environmental processes that are at most weakly 
coupled to the systems of interest are also worth consideration. Varia-
tion generated by weakly coupled processes is consistent with evolution 
at the global scale, but does not depend on natural selection at any single 
local scale; it thus provides a “Non-Darwinian” source of order. Such 
weak coupling is exemplified by situations involving self-organizing 
systems that include engineered and manufactured components; we 
suggest that weak-coupling models may be realistic in other settings as 
well. 

Second, treating ab initio self-organization as an analog of regulative 
development challenges the very idea of self-organization. In its purest 
form, the idea of self-organization suggests that the information needed 
for organization is present in the self. This immediately raises the 
essentially unanswerable question of how this critical information got 
there to begin with. Directly relating ab initio self-organization to 
regulative development forces us to ask, at each step of the process, what 
systems count as “selves,” how the environment of each “self” is defined, 
and how, in each case, the exchange of information between “self” and 
environment is implemented (Levin, 2021). 

Our analysis suggests two broad conclusions: 

1. Reproduction via cell division is an efficiency hack – a cheap heu-
ristic – which evolution “froze in” by selecting strong self/other 
recognition systems starting in bacteria. Decoupling replication from 
self-organization generalizes the systems of interest to develop-
mental studies toward “egalitarian” (Strassmann and Queller, 2010) 
assemblages of unrelated, or in the evolved case, only distantly 
related, components that “just happen” to work well together. This 
allows simpler origin of life stories. It acknowledges the possibility of 
kinematic replication in biological systems, as observed experimen-
tally in “xenobots” constructed from dissociated Xenopus laevis skin 
cells (Kriegman et al., 2021). It suggests that symbiotic systems such 
as microbial mats are “canonical” to at least the same extent as 
obligately sexual multicellulars. The focus of both ab initio and 
developmental studies becomes, in this case, how components 
interact once they are placed in mutual proximity, independently of 
their origins.  

2. “Self-organization” is always environment-dependent, so we can 
view it as at least in part environment-directed: some of the 
instructive information is initially in the environment, not in the self 
that assembles. From the perspective of physical interaction (Fields 
and Marcianò, 2020; Fields, Glazebrook and Marcianò, 2021) or of 
the FEP (Friston, 2019; Ramstead et al., 2022; Fields et al., 2022), 
this is obvious. It is also obvious in many origin of life models, in 
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microbial mat assembly, and in embryogenesis, even in “European 
plan” organisms like C. elegans (Barrière and Bertrand, 2020). It is, 
nonetheless, often neglected or de-emphasized, particularly in 
theoretical work. As discussed in Fields et al. (2022), the FEP applies 
to the environment of any system of interest, rendering it an 
uncertainty-minimizing agent as discussed in §4 below. The 
environment-dependence of self-organization is a consequence of the 
environment acting as a Bayesian agent. 

In what follows, we first review in §2 both the classical development 
of the FEP and its quantum information-theoretic generalization. As the 
latter provides the most convenient formalism for describing the system- 
environment interaction, we adopt it in what follows. We then discuss in 
§3 a fundamental symmetry of the FEP that is often neglected: the FEP 
requires the environment of any system to also be a VFE-minimizing 
agent. While any system-environment interaction is informationally 
symmetric – equal quantities of information flow in both directions – 
what the two parties do with the information they receive may be 
radically different. Symmetric information flows, in other words, are 
consistent with “cognitive light cones” (Levin, 2021, 2022) of different 
widths and depths, and hence different active inference capabilities, on 
the two sides of the system-environment boundary. We turn in §4 to an 
explicit comparison between regulative development and ab initio 
self-organization, focusing first on characterizing the environments of 
each active component as information sources, and hence as themselves 
active agents, at each step in the process. We investigate, in particular, 
how both regulative development and ab initio self-organization 
decrease the VFE detected by the environment, making them 
thermodynamically-driven processes under the FEP. The environment of 
any system, in other words, can be expected to act so as to increase that 
system’s complexity, with the likely outcome being a 
complexity-increasing “arms race” between the system and its envi-
ronment if both have sufficient computational resources. We conclude 
by outlining a “mix and match” experimental strategy suggested by 
these results in §5. 

2. Classical and quantum formulations of the FEP 

2.1. Classical formulations 

The FEP applies to physical systems – what Friston (2019) calls 
“things” or “particles” – that are persistent, in the sense of having a 
well-defined state space, over some time period of interest. Adopting the 
notation of Friston (2019), if the internal states μ of such a system S are 
conditionally independent of the states η of its environment E, it (by 
definition) possesses an MB, defined as the set b of states on which the 
dependence of μ on η is conditioned. This MB condition will hold, in 
general, provided the interaction between system and environment is 
significantly weaker than the internal self-interactions of either. Three 
remarks are in order here. First, the environment E is the entire envi-
ronment of S, or at least the entire environment of interest; in what 
follows, we will always consider E to comprise “everything but S.” 
Second, fixing the sets of states μ and η uniquely fixes the set b and hence 
the MB. Every system, therefore, has a unique MB separating it from its 
environment. Third, the definition of an MB makes no explicit reference 
to ordinary, three-dimensional (3d) space. Therefore, while it is 
commonplace to consider the MB of an organism, for example, to 
coincide with or be implemented by its 3d spatial boundary, this is not a 
requirement of the theory. Indeed, nothing in principle prevents a 
collection of spatially-disconnected entities, e.g. a population of or-
ganisms, from having an MB. 

Given the conditions above, the VFE is a statistical relation between 
internal, external, and intervening blanket states. It can be written 
Friston (2019), Eq. 2.3: 

F(π) = Eq(η)
[
ln qμ(η) − ln p(η, b)

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Variational  free  energy

= Eq[ − ln p(b|η) − ln p(η)]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

Energy  constraint  (likelihood &  prior)

− Eq
[
− ln qμ(η)

]

⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟
Entropy

= DKL
[
qμ(η)

⃒
⃒p(η)

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Complexity

− Eq[ln p(b|η)]
⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅ ⏟

Accuracy

= DKL
[
qμ(η)

⃦
⃦p(η|b)

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Divergence

− ln p(b)
⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
 Log  evidence

≥ − ln p(b)

(1) 

where π(t) = (μ(t), b(t)) is the time-dependent “particle” state. The 
VFE functional F(π) is an upper bound on surprisal (a.k.a. self- 
information) I(π) = − log P(π) = − ln p(b) because the Kullback-Leibler 
divergence term (DKL) is always non-negative. This KL divergence is 
between the probability density over external states η, given the MB 
state b, and a variational density qμ(η) over external states parameter-
ized by the internal state μ. Note here that the blanket states b are 
considered components of the “particle” state π; hence the VFE defined 
by Eq. (1) is the VFE “for” or “experienced by” S. We could, however, 
also consider a composite state ρ = (η, b) and write an analog of Eq. (1) in 
which the roles of μ and η are exchanged; the resulting F(ρ) would be the 
VFE “for” or “experienced by” E. This symmetry of the FEP will be 
explored further in §3 below. 

If the joint system S ⊔ E, where ⊔ denotes disjoint union, is repre-
sented as a random dynamical system, then S having an MB requires that 
state trajectories that start in μ remain in μ; the states of S cannot, in 
other words, diverge to outside of the boundary of S. This condition is 
met if S has some non-equilibrium steady state (NESS) density. If we 
view the internal state μ as encoding a posterior probability distribution 
over the external state η, then minimizing VFE is, effectively, minimizing 
a prediction error under a generative model (GM) encoded by the NESS 
density. In this interpretation, Eq. (1) may be viewed as defining a 
“Bayesian mechanics” (Ramstead et al., 2022) and minimization of VFE 
is a form of inference, termed “active inference” because one way of 
minimizing VFE is to act on the environment to move it toward an ex-
pected state. In this case, an agent S is competent if and only if it is an 
effective minimizer of its experienced VFE, i.e. if it can prevent its VFE 
from becoming high enough to drive its states far from its NESS, 
destroying the integrity of its MB (Friston, 2019). 

While a substantial literature now supports the applicability of the 
FEP to living systems (see e.g. Friston et al. (2020); Smith et al. (2020) 
for topical reviews), the assumptions of static NESS densities and MBs 
have also been criticized as unrealistic for living systems (e.g. Raja et al. 
(2021); Aguilera et al. (2021); Bruineberg et al. (2022); Di Paolo, 
Thompson and Beer (2022); see also Biehl et al. (2021) for a critique of 
ancillary assumptions related to these). Central to several of these cri-
tiques is an emphasis on the history-dependence of living systems and 
the neglect of history, i.e. encoded memory, in specifying system states 
under the FEP. In part as a response to these criticisms, the FEP has been 
reformulated as a least-action principle on paths or trajectories in the 
joint S ⊔ E state space (Friston et al., 2022), an extension that permits a 
re-interpretation in terms of classical gauge fields (Sakthivadivel, 2022a, 
b); see Ramstead et al. (2022) for a summary of these developments. 
These formulations do not require assuming a NESS or a fixed MB; see 
Sakthivadivel (2022c), in particular, for a discussion of material ex-
change between a system and its environment. 

We have taken an alternative, but as shown in Fields et al. (2022), 
fully-consistent approach to generalizing the FEP, reformulating it as a 
quantum information-theoretic principle. This formulation applies to all 
physcal systems that are not entangled with, and hence can be distin-
guished from, their environments. It explicitly addresses the questions of 
how organisms identify specific objects within their environments, and 
how they write to and read from their memories of specific events. 
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2.2. Quantum information-theoretic formulation 

As Deutsch (1997) points out, information theory is inherently 
quantum: it is about answers to yes/no questions (Wheeler, 1989). The 
idea that quantum theory is fundamentally about observation can be 
traced back to Bohr (1928); see also Bohr (1958). Fuchs (2003) proposed 
that quantum theory is fundamentally about observation followed by 
Bayesian inference; this view has since been productively developed by 
the “QBist” movement (Fuchs, 2010; Fuchs and Schack, 2013; Mermin, 
2018). Quantum information theory represents the joint system S ⊔ E by 
a Hilbert space, which for simplicity we assume to be finite and denote U 
for “universe” of interest. As we take E to contain everything (of interest) 
other than S, we can choose it to be large enough that the joint system U 
can be considered isolated, or closed. The basis vectors of any Hilbert 
space represent the possible values of the degrees of freedom of the 
relevant system; hence the basis vectors of U represent all possible 
values of all degrees of freedom of either S or E. As a measurement of 
each degree of freedom either yields, or does yield, any particular value 
at any particular time, we can treat these basis vectors as binary without 
loss of generality; hence we can represent U = ⊗M

i=1qi, where the 
dimension M = dim(U) is the number of basis vectors of U, the qi are 
quantum bits (qubits), i.e. Hilbert spaces of dimension one, and ⊗ is the 
Hilbert-space tensor product. We can represent the time-evolution of the 
state of U, in an abstract, parametric time t, as: 

PU = e− (ı/ℏ)HU t (2)  

where HU is the Hamiltonian (total energy) operator on U and ℏ is 
Planck’s constant; see Nielsen and Chuang (2000) (or any other text-
book) for a standard introduction to this formalism. 

The Hamiltonian operator is additive; hence for any decomposition 
of U into subsystems S and E, we can write HU = HS + HE +HSE, where HS 
and HE and the internal or “self” interactions of S and E, respectively, 
and HSE represents the interaction between S and E. We now introduce 
the single assumption that underlies the FEP: 

Separability: We assume that the joint state |U〉 (employing the 
Dirac notation for states) factors, during the time period of interest, 
as |U〉 = |SE〉 = |S〉|E〉. 

If multiple observations are involved, we require that the density ρU =

ρSE = ρSρE. The joint state, or state density, is separable, i.e. factors, if 

and only if (indeed, by definition) it is not entangled, i.e. the entangle-
ment entropy S (SE) across the S-E boundary, which we denote by B , is 
zero. This condition guarantees that the states of S and E can be inde-
pendently specified, i.e. they are conditionally independent. 

The interaction HSE is defined at the boundary B . Given separability 
between S and E, we can, without loss of generality, write HSE as: 

HSE = βkkB Tk

∑N

i
αk

i Mk
i , (3) 

where the index k = S or E, kB denotes Boltzmann’s constant, T is 
temperature, the Mk

i are N mutually-orthogonal Hermitian operators 
with eigenvalues in { − 1, 1}, the αk

i ∈ [0, 1] are such that 
∑N

i αk
i = 1, and 

βk ≥ ln 2 is an inverse measure of k’s thermodynamic efficiency that 
depends on the internal dynamics Hk; see Fields and Marcianò (2020); 
Fields et al. (2021a); Addazi et al. (2021); Fields, Glazebrook and 
Marcianò (2022a); Fields et al. (2022) for further motivation and details 
of this construction and Fields, Glazebrook and Marcianò (2022b) for a 
pedagogical review. Explicit time (t) dependence can be introduced by 
making the αk

i time-dependent, i.e. functions αk
i (t). This interaction 

HSE(t) can, again without loss of generality, be visualized as shown in 
Fig. 1; a fully-general control-theoretic model of HSE(t) is provided in 
Fields et al, 2023a, 2023b. For each of k = S or E, the operators Mk

i each 
act on one of N qubits to either measure, or dually (Pegg et al., 2002) 
prepare, its state. These qubits can be regarded as constituting a Hilbert 
space ⊗N

i=1qi that characterizes B ; note that this Hilbert space is ancil-
lary to U, i.e. B is not a physical component of either S or E. The results 
of all N measurements by system k is an N-bit encoding of the current 
measured eigenvalue, for k, of HSE, i.e. the current value of energy 
transferred to k by the interaction; the results of all N preparations by 
system k is an N-bit encoding of the current prepared eigenvalue, for k, 
of HSE, i.e. the current value of energy transferred from k by the inter-
action. These statements imply an elapsed, system-relative time interval 
dtk between measurement and preparation; where the time tk is the 
fundamental time unit for system k (Fields, Glazebrook and Marcianò, 
2021; Fields et al., 2022; Fields et al., 2022b). 

Under the conditions above, the boundary B is a holographic screen 
separating S from E: it encodes precisely the information that S can 
obtain about E and vice-versa. As such, it performs the functions of an 
MB. Hence any two physical systems which have a separable joint state, 

Fig. 1. The action of HSE given by Eq. (3) can be 
realized by the alternating measurement and prepa-
ration actions of each of the Mk

i on a qubit qi. Qubits 
are depicted as Bloch spheres (Nielsen and Chuang, 
2000). There is no requirement that S and E share 
preparation and measurement bases, i.e. local defi-
nitions of the z axis for each qubit. The qubits 
together form a communication channel C that is 
implemented by the boundary B separating S from E. 
Adapted from Fields and Marcianò (2020) Fig. 1, 
CC-BY license.   
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i.e. an interaction that can be represented by Eq. (3), are separated by an 
MB. Note that this characterization of B , like the definition of an MB 
given in §2.1 above, makes no reference to 3d space; indeed it is 
completely topological. Note moreover that both the boundary B and 
the interaction Eq. (3) are completely invariant under further de-
compositions of either S or E. This follows solely from the additivity of 
HU, or alternatively, the associativity of the tensor product. The internal 
interaction HE, for example, can be re-written as HE =

∑
iHEi +

∑
ijHEiEj 

without altering the equation HU = HS + HE + HSE or the definition of B 

in any way. We will see in §3.3 below that S’s identification of, and 
interaction with, specific “objects” or “systems” embedded in E is 
completely independent of any assumptions about the decomposition of 
E. We will then consider in §4.2 how using multiple boundaries that 
enclose multiple hierarchical “levels” of a system of interest allows us to 
track system growth and development. 

We are now in a position to state the FEP for generic quantum sys-
tems. As all that S can observe about E are the states of the qi on B as E 
has prepared them, S’s uncertainty about E (i.e. S’s VFE) is solely un-
certainty about the (next) states of the qi. This uncertainty is reduced to 
zero if S’s measurements of the qi yield the same values that it, S, pre-
pared; this will occur as MS

i →ME
i for all i. If MS

i = ME
i for some i, the 

entanglement entropy S (SE) becomes non-zero; in the limit at which 
MS

i = ME
i for all i, S and E become fully entangled (Fields, Glazebrook 

and Marcianò, 2021; Fields et al., 2022; Fields et al, 2023a). The limit at 
which VFE is minimized to zero is, therefore, the limit in which sepa-
rability between S and E is fully lost. When formulated for generic sys-
tems, therefore, the FEP is the classical limit of the Principle of Unitarily, 
which requires the time evolution of closed systems to preserve infor-
mation, and hence to asymptotically approach pure, fully-entangled 
states. Note that this latter principle applies to U, which by 
comprising “everything” of interest is, by definition, a closed system as 
noted earlier; its components S and E, which interact with each other, 
are open. The FEP applies, therefore, to all systems to which quantum 
theory applies, i.e. to all physical systems, provided only that they are 
separable from their environments. In this case, what is of interest is not 
that some system behaves in accord with the FEP, but rather how it does 
so. As Ramstead et al. (2022) emphasize, what can be tested experi-
mentally are the proposed answers to such how questions. The 
remainder of this paper discusses in detail how a system can behave in 
accord with the FEP, in the specific case of living systems undergoing 
regulative development. 

3. Informational symmetry is consistent with cognitive 
asymmetry 

3.1. Physical interactions are informationally symmetric 

As discussed in connection with Eq. (1), and as clear from the S-E 
exchange symmetry of Eq. (3) or Fig. 1, the FEP applies equally to any 
system and its environment (see also the discussion of this point in Fields 
et al. (2022)). The interaction HSE as defined by Eq. (3), and its imple-
mentation on the inter-system boundary B are, in particular, informa-
tionally symmetric. Each “cycle” of interaction between S and E consists, 
in the representation of Fig. 1, in the encoding by E of an N-bit “message” 
on the qubits qi, followed by the measurement, by S, of the qi to produce 
an N-bit outcome, followed by preparation of the qi by S and measure-
ment of the qi by E (Fields and Marcianò, 2020). This process effectively 
transfers N classical bits from E to S and then back to E. Whether the 
values of these bits are faithfully transferred between S and E – whether S 
will measure a value ‘+1’ if E prepares a value ‘+1’ – depends on 
whether S and E employ the same local reference frame – in this case, the 
same local z axis – for preparation and measurement. In general, they 
will not; “free choice” of reference frame is a requirement of separability 
(Fields, Glazebrook and Marcianò (2022b); see also Conway and Kochen 
(2009) for a general discussion of free choice in this context). As we will 

see in §3.3 below, the local reference frames employed by systems to 
prepare and measure the qubits comprising their boundaries largely 
determine how they are able to interact with their environments, and 
hence how their behavior complies with the FEP. Before discussing this, 
however, it is necessary to understand the most fundamental aspect of 
system-environment interaction, thermodynamic exchange. 

Information and thermodynamic energy are interconvertible by 
Landauer’s principle (Landauer, 1961, 1999; Bennett, 1982), which sets 
a lower bound of ln2kBT per bit on thermodynamically irreversible 
processes, e.g. bit erasure. Direct information-to-energy conversion in 
accord with this limit has been demonstrated experimentally (Toyabe 
et al., 2010; Bérut et al., 2012; see Parrondo et al., 2015 for review). Any 
physical interaction that irreversibly transfers information, therefore, 
must be accompanied by a transfer of thermodynamic energy. Process-
ing information to obtain an answer that has an effect on subsequent 
behavior, i.e. irreversible classical computation (Horsman et al., 2014), 
has a finite free energy cost, again given by Landauer’s principle. Hence 
any system that uses information from its environment to alter its 
behavior – including, clearly, any living system – must devote some of 
the information/energy obtained from its environment to the 
free-energy cost of classical computation. The amount of energy ob-
tained from the environment thus provides a strict upper bound on the 
amount of classical computation (in bits per unit time) a system can 
perform (Fields and Levin, 2021). We can, therefore, represent any 
system-environment interaction as a bidirectional exchange of infor-
mation across a boundary B in which some of the information 
exchanged is devoted, by each party, to the free-energy requirements of 
classical computation as illustrated in Fig. 2. Photosynthetic systems 
provide a straightforward example: some fraction of the photons 
received by such systems is allocated to electron transfer processes that 
provide free energy (e.g. ATP) to molecular pathways that process in-
formation from the environment and drive actions on the environment. 
The bits allocated to supplying the free-energy requirements of classical 
computation – e.g. those specifying photons of useable frequency in 
photosynthetic systems – are “uninformative” in that their specific 
values (i.e. +1 or − 1) are irrelevant to their per-bit energetic value (at 
least ln2kBT); hence they collectively constitute an “uninformative 
sector” of B , the extent of which depends on the thermodynamic effi-
ciency of the system employing them (see Fields et al. (2022) for further 
discussion). The remaining bits, if any, collectively constitute the 
“informative sector” of B ; only these bits can provide inputs to, or 
encode outputs from, nontrivial computational processes. As the defi-
nitions of these sectors depend on efficiency (βk in Eq. (3)), they will in 
general differ between S and E. 

The informational symmetry of physical interactions has an impor-
tant, but often neglected, consequence in the context of the FEP: the 
environment E of any system S must itself be considered an agent. As 
discussed in connection with Eq. (1), E’s VFE quantifies its uncertainty 
about S’s behavior. The FEP requires that E engages in active inference, 
i.e. that it acts on its environment – the system of interest S – so as to 
minimize the VFE that it, E, measures at its MB. In the formulation 
employed here, the MB of each system is just the (state space) boundary 
B between them; hence the FEP requires that any pair of interacting 
systems behave in such a way that they both minimize the VFE that they 
measured at their mutual boundary. In the limit in which the S-E 
interaction is purely thermodynamic, i.e. neither S nor E engages in any 
classical computation, both minimize measured VFE by approaching 
thermodynamic equilibrium. If either S or E engages in classical 
computation, VFE-minimizing solutions are in general not at thermo-
dynamic equilibrium (Fields, Glazebrook and Marcianò, 2021); to the 
extent that S and E can be approximated by classical random dynamical 
systems, these solutions are NESS solutions for both S and E (see Friston 
(2019); Ramstead et al. (2022) for extensive details). Such solutions 
respect the 2nd Law from the perspectives of both component systems: S 
and E each absorb free energy from and exhaust waste heat into their 
interaction partner, i.e. E and S respectively. Hence each system “sees” 

C. Fields and M. Levin                                                                                                                                                                                                                         



BioSystems 229 (2023) 104927

6

the entropy of its interaction partner increase. The (classical) entropy of 
the total system SE is its total information content, which is strictly 
conserved and hence can be rescaled to zero (cf. Tegmark, 2012 for a 
discussion of entropy in this bipartite-decomposition setting). This 
rescaling of the total entropy has no effect on the local entropies 
measured by either S or E. 

3.2. Informational symmetry is consistent with thermodynamic 
asymmetry 

Let us now assume that S is capable of nontrivial information pro-
cessing. In this case, S implements some nontrivial function f: s → a, 
where s is the instantaneous state of its informative (unshaded in Fig. 2) 
input sector and a is the instantaneous state of its informative output 
sector. If S is considered as a random dynamical system, the FEP requires 
this function to be, on average, either a gradient descent or an (internal) 
solenoidal flow on the statistical manifold that defines S’s measured VFE 
as a function of E’s state (Friston, 2019; Ramstead et al., 2022). In the 
current formulation, the function f is a (in general quantum) computa-
tion implemented by the internal interaction HS and must, on average, 
be VFE non-increasing for S. 

The internal dynamics HS must respect the thermodynamic asym-
metry, for S, between the informative (s, a) sector of B and the unin-
formative, thermodynamic sector. The internal dynamics HE of E, 
however, are by construction conditionally independent of HS. Hence if 
E also implements nontrivial information processing, there is no 
requirement, and indeed no expectation, that the boundary between 
informative and uninformative sectors for E aligns with that assigned by 
HS. Nor is there any requirement or expectation that S and E have the 
same, or even similar, efficiencies of free energy usage or waste heat 
dissipation. What one interaction partner treats as an informative signal, 
either incoming or outgoing, can be treated by the other as uninfor-
mative “noise,” i.e. as waste heat output or free energy input. Mean-
ingful communication across B requires, first and foremost, overcoming 
this thermodynamic asymmetry. As we will see, morphology – effec-
tively, the addition of geometric degrees of freedom to B – provides one 
way of doing this. 

3.3. State measurements are reference-frame dependent 

To understand what S can measure, and hence what S can “know” 
about E, it is useful to reflect on how we make measurements, as sci-
entists in laboratories. Consider measuring lengths with a meter stick 
that has 1 mm resolution. The meter stick physically encodes a length 
standard – the meter – and also physically encodes, by means of per-
manent, unmovable tick marks, the possible outcome lengths that it can 
measure, each separated from the others by half of the measurement 
resolution. The length standard – the meter – encoded by the meter stick 
is arbitrary, but by encoding it, the meter stick allows measurements of 

different objects at different times to be compared. The comparison 
process depends on two assumptions: 1) that the length of the meter 
stick, and hence what “1 m” means, does not change, and 2) that the 
number and positions of the tick marks, traditionally called “pointer 
positions,” do not change. Physically encoding these two assumptions 
makes the meter stick a reference frame (RF); it is useful as a reference to 
which other lengths may be meaningfully compared. An RF is simulta-
neously a physical object and a semantic object: it assigns to a mea-
surement not just an outcome value, but also a meaning. 

Human observers make ubiquitous use of reference frames, including 
meter sticks, clocks, and all forms of laboratory equipment, but also such 
non-artifacts as the diurnal cycle and the Earth’s gravitational and 
magnetic fields. Any object that is associated, via some process of cali-
bration, with a standard can serve as an RF. Making use of an external 
RF, however, always requires observation, and these observations must 
be mutually comparable to be physically meaningful. Hence employing 
an external RF for a degree of freedom such as length or time requires 
encoding an internal RF, including an internal standard, for that degree 
of freedom. Internal “standards” are fixed default values, expectation 
values, or set points – in dynamical systems language, NESS solutions or 
attractors. All internal processes that have such set points can be 
considered internal RFs. Humans and other organisms encode internal 
spatial, temporal, vibrational, chemical, and electromagnetic RFs, with 
RFs for the cell cycle, membrane voltage, and various chemical con-
centrations being some of the most ancient (see Fields and Levin 
(2020c); Fields and Levin (2021) for explicit examples). Internal RFs 
solve the “problem of meaning” (Froese and Taguchi, 2019) for organ-
isms: they render an organism’s measurements mutually comparable, 
and hence consistently actionable. To the extent that they contribute to 
homeo/allostasis, they are essential for survival, as indeed recognized 
by the classical formulation of the FEP (Friston, 2019). 

In the language employed here, any internal RFs of a system S are 
implemented by HS. As HS cannot be determined given only the inter-
action HSE with some E, internal RFs cannot, in principle, be fully 
characterizable by external observations. This is, in fact, well-known 
independently of the current considerations: all RFs are physical sys-
tems that must, at least at microscopic scales, be considered quantum 
systems. They are, therefore, quantum RFs (QRFs; Aharonov and Kauf-
herr (1984), Bartlett et al. (2007)) that encode “nonfungible” informa-
tion, that is, information that cannot be fully specified by any finite 
string of classical bits (Bartlett et al., 2007). It is somewhat ironic that 
this notion of non-fungibility was discovered by quantum theorists, as 
classical physics assumes that physical systems are characterized by real 
numbers, which are not in general representable as finite bit strings. 
Nonfungibility has the consequence that QRFs cannot be shared by 
sharing bit strings, i.e. by classical communication, but only by being 
transferred as unique physical systems (Bartlett et al., 2007; Fields and 
Marcianò, 2019). Internal QRFs are, therefore, not sharable in principle. 
Indeed in the limit in which two distinct systems approach 

Fig. 2. a) A system S interacts with its environment E; 
the Hamiltonian operator HSE representing the inter-
action is defined at the boundary B that functions as 
an MB statistically separating S from E. The environ-
ment E comprises everything that is not system S. b) 
When the boundary B is viewed from S’s perspective, 
in can be divided into incoming (red) and outgoing 
(blue) bits. Some of these bits (gray shading) must be 
allocated to the thermodynamic functions of free- 
energy input and waste-heat dissipation; these bits 
are uninformative, i.e. unavailable for computational 
processing. The remaining bits are available as 
computational inputs (sensations) and outputs (ac-
tions). The situation is the same from E’s perspective, 
though the allocation of bits to informative and un-
informative sectors may be different. Adapted from 
Kuchling et al. (2022), CC-BY license.   
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implementing identical internal QRFs, they become entangled and lose 
their identities as distinct systems; this is precisely the limit MS

i = ME
i for 

all i at which the time evolution under the FEP becomes unitary (Fields 
et al., 2022; Fields, Glazebrook and Marcianò, 2023). Hence while any 
QRF can be given a classical description based on finite-resolution ob-
servations, e.g. by a DNA sequence, a pathway diagram, or a parame-
terized differential equation, such maps can never completely 
characterize the (nonfungible) territory. 

The information encoded by living systems is, in practice, non-
fungible in a very clear sense – it typically cannot be obtained, even at 
low resolution, without destructive measurements that breach the sys-
tem’s MB and thus interfere with the internal dynamics, and hence with 
the very internal information that is of interest. At the cellular level, set 
points that define reference values are encoded in memory structures 
spanning the scales from that of DNA sequences, to intracellular con-
centration gradients, to cytoskeletal and membrane organization. Mea-
sures such as DNA sequencing, RNA profiling, and most biochemistry are 
irreversibly disruptive and obtain only snapshots of the cellular state. 
The processes that implement cellular QRFs typically involve multiple 
components, are often tightly coupled to other processes, e.g. by com-
mon second messengers such as Ca2+, and may require quantum 
coherence as a resource to achieve thermodynamic feasibility (Fields 
and Levin, 2021); hence no measurements can be guaranteed to be free 
of side effects. The “measurement effect” that besets not only cell 
biology, but all of the life sciences, is thus not merely an analog of a 
quantum principle, but rather direct evidence of the non-fungible nature 
of biological systems. 

The language of QRFs – nonfungible processes coupled to non-
fungible standards – allows us to distinguish three types of measure-
ments that a system S could, in principle, make. The first is to implement 
a QRF Q that acts on the entire input component B inf (in) of the infor-
mative sector B inf of its boundary, as shown in Fig. 3a. The action of Q 
yields an encoding q of the instantaneous state of B inf (in). As the 
number of bits encoded on B , or on any sector of B , is proportional to 
its area, the free energy cost of implementing Q on B inf can be written 
as: 

EQ = Ainf (in)βQkBT (4) 

where Ainf(in) is the area of B inf (in), βQ ≥ ln2 is a factor measuring 
the energetic efficiency of Q, kB is Boltzmann’s constant and T is tem-
perature (Fields, Glazebrook and Marcianò, 2021). 

Assuming fixed efficiency β = βQ, S can save free energy by 
measuring only particular sectors of B inf (in), as shown in Fig. 3b. The 
state information obtained is, in this case, limited to the sector states q1 
and q2; this limitation reflects the inevitable trade-off between energy 
expenditure and information gain. From a computational perspective, 
however, S can now measure, using further specialized QRFs, the cor-
relation < q1, q2 > and the conditional dependencies (q1|q2) and (q2|q1). 
These further computations enable basic logic functions (AND, OR, 
NOT) and, given a memory for prior probabilities, Bayesian inference 
(Fields and Glazebrook, 2022). Hence sector measurements enable 
context-dependent, explicitly hierarchical computation. A general 
model of the control-flow process required to deploy distinct QRFs in a 
context-dependent way is provided in Fields et al, 2023a, 2023b. 

A specialized form of sector measurement is shown in Fig. 3c. Here 
the sector R is required to maintain a fixed state r; hence measured states 
of the sector P have the form p = (p|r). The disjoint union P ⊔ R, in this 
case, functions as an external RF with fixed reference component R and 
pointer component P; the “state of interest” of PR is its “pointer” state p. 
All perceivable objects, or in the language of Friston (2019), all 
time-persistent things, detectable by S have this composite form: the 
invariant reference sector R allows identification of the object as “the 
same thing” that was measured earlier, while the variable pointer sector 
P displays the state of interest. Again items of laboratory apparatus 
provide a canonical example since they must be distinguished from their 
surroundings by measuring such observables as size, shape, color, and 
position before the informative “pointer” readouts can be determined. 

3.4. Hierarchical measurements are ubiquitous at all scales 

Turning now to biology, it is clear that measurements of the forms 
shown in Fig. 3b and c are ubiquitous, while measurements of the form 
shown in Fig. 3a can occur only in the limit of no post-measurement 
classical processing. Measuring the entire detectable state of the envi-
ronment at every instant leaves no space on B to support thermody-
namic exchange; organisms instead focus their resources on what is 
salient and significant, deploying different sector-specific QRFs at 
different times. Allocating resources to the salient and significant is the 
function of attention systems (see e.g. Burgoyne and Engle (2020) for a 
recent review and Fields and Levin (2021) for discussion in the current 
context). 

While both object perception and comparative measurements are 
familiar in animals with large brains, they are less well characterized in 

Fig. 3. a) A system S implements a QRF Q that acts on the entire input component B inf (in) of the informative sector B inf of its boundary, yielding an encoding q of 
the state of B inf (in). b) S implements QRFs Q1 and Q2 that act only on sectors Q1 and Q2 of B inf (in), yielding encodings q1 and q2 of the states of those sectors. c) S 
implements QRFs P (“pointer”) and R (“reference”) that act on sectors P and R of B inf (in), yielding encodings p and r of the states of those sectors, subject to the 
restriction that r remains fixed. Diagrams of similar form can be drawn using classical descriptions of the QRFs; standard intracellular signalling pathway diagrams, 
for example, have the form of Fig. 3b or c. 
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smaller-brained or aneural animals, plants, and unicellulars. All organ-
isms capable of identifying and behaving in state-specific ways toward 
mates or conspecifics, however, are capable of some level of object 
identification, and hence of Fig. 3c measurements. This capability ex-
tends, therefore, into the microbial world. All organisms capable of 
conditioning their behavior on the values of two variables simulta-
neously, e.g. on sugar and salt concentration, or on ambient light and the 
availability of water, are capable of Fig. 3b measurements. This capa-
bility extends, therefore, even deeper into the microbial world, and to 
our knowledge characterizes all of life. The same considerations apply at 
intracellular scales. Enzymes that require cofactors or phosphorylation 
as well as a substrate are performing Fig. 3b measurements on their 
environments, as are membrane-bound channels, pumps, and receptors 
that are sensitive to both local membrane voltage and binding of GTP or 
other regulatory molecules. RNA polymerases that bind DNA and then 
scan for specific transcription-initiation sites (Kuehner and Brow, 2006) 
are performing Fig. 3c measurements on their environments: first 
identifying a DNA molecule as an object, and then detecting a particular 
state – a particular base-sequence motif – of that object. 
Spatially-organized intracellular pathways are increasingly recognized 
as performing complex, multi-input computations, both in neurons 
(Gidon et al., 2020) and in non-neural cells (Kramer et al., 2022), as long 
argued by the basal cognition movement on the basis of both 
biochemical and behavioral data (Maturana and Varela, 1980; Pattee, 
1982; Stewart, 1996; di Primio et al., 2000; Lyon, 2015; Baluška and 
Levin, 2016; Baluška and Reber, 2019; Levin, 2019; Lyon, 2020). 

3.5. Hierarchies of QRFs are MCAs 

We have, in the above, focused on measurements, i.e. on processing 
the bits encoded on the incoming side of the informative sector B inf (in) 
of the S-E boundary. Actions on E can, however, be viewed as “prepa-
rations” of the bits encoded on the outgoing side of the informative 
sector B inf (out). Preparing or setting a bit value is dual, as a process, to 
measuring its value (Pegg et al., 2002). These processes are, therefore, 
informationally symmetric; indeed any QRF can be viewed as preparing, 
as well as measuring, the values of some degree(s) of freedom. A meter 
stick, for example, can be used to mark 30 cm lengths as well as to 
measure them. This informational symmetry is manifest when QRFs are 
represented as category-theoretic structures – formally, limits and col-
imits – of networks of bidirectional operators on single strings of bits, a 
representation that is provably completely general (Fields and Glaze-
brook, 2022). 

If all QRFs are informationally symmetric, the mapping f: s → a 
implemented by the internal dynamics HS must be informationally 
symmetric. The informational symmetry of HSE then requires that the 
thermodynamic functions of free energy acquisition and waste heat 
dissipation must be informationally symmetric. The dynamics HS can, 

therefore, be divided into two informationally symmetric flows, one of 
which transfers free energy to and dissipates waste heat from the other. 
We can, therefore, redraw Fig. 2b as Fig. 4. The analogy with informa-
tion and free energy flows in chemical reactions is obvious. 

The mapping f: s → a is, at each instant, implemented by some hi-
erarchy of QRFs on both input and output sides; we have previously 
showed, as an example, how cortical neurons implement QRF hierar-
chies (Fields, Glazebrook and Levin, 2022). Which QRFs are deployed at 
any instant determines a measurement context (Fields and Glazebrook, 
2022; Fields et al., 2022); switching between contexts is a meta-
processing function which, as a component of f: s → a, must itself be 
implemented by a (fixed) QRF hierarchy (Kuchling et al., 2022). Each 
QRF in the hierarchy is a self-contained computational system with its 
own inputs, outputs, power supply, and semantics. The QRF hierarchy 
is, therefore, a canonical MCA. 

4. Biological self-organization is thermodynamically driven 

4.1. The “environment” is an active agent 

It is well known that simple physical systems can self-organize 
complex structures when subjected to mechanical and thermodynamic 
forcing; thunderstorms provide the most familiar example. Turing 
(1953) introduced such processes to the study of morphogenesis; see 
Kondo and Miura (2010); Morelli et al. (2012) for reviews. In practice, 
such mechanisms are generally conceptualized as occurring inside the 
system of interest, e.g. inside a cell, or inside a developing organism. By 
considering the “environment” to be outside of the system undergoing 
pattern formation, the role of the environment as a thermodynamic 
agent is minimized. This renders such pattern formation models prima 
facie consistent with the neo-Darwinian, genome-focused approach to 
morphogenesis (e.g. Monod, 1972; Dawkins, 1984; Michod, 1999) with 
its idea that “[d]evelopmental biology can be seen as the study of how 
information in the genome is translated into adult structure, and 
evolutionary biology of how the information came to be there in the first 
place” (Szathmáry and Maynard Smith, 1995, p. 231). 

By focusing attention on processes occurring at system-environment 
boundaries, the FEP framework allows us to examine the role of the 
“environment” of a process not at some pre-determined scale, but at the 
scale of the actual dynamics of interest. As emphasized by Friston 
(2019), all physical systems that persist through time can be understood 
as self-organizing from the perspective of the FEP. We are now in a 
position to use the conceptual tools provided by the FEP to understand 
self-organization both within a given scale and, more interestingly, as a 
thermodynamically-driven process that generates complexity at pro-
gressively larger scales. This will allow us to connect origin-of-life 
models to evolutionary and developmental models within a single 
formal framework, and to understand how the transition from 

Fig. 4. The mapping f: s → a implemented by S’s QRFs is supported by an informationally-symmetric thermodynamic flow from the uninformative (thermodynamic) 
sector B th(in) to the corresponding output sector B th(out). 
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protocellular to cellular and then multicellular systems is driven by the 
FEP. 

The FEP has already been shown to provide a generic model of 
within-scale self-organization for systems with fixed MBs (Kirchhoff 
et al., 2018; Friston, 2019). To briefly summarize, VFE minimization 
corresponds to maintaining a state close to the NESS. This is achieved 
when internal processes – i.e. the internal dynamics HS – predict the 
environment’s actions on the MB sufficiently accurately to maintain the 
integrity of the MB and hence the conditional independence of internal 
states. This is referred to as “self-evidencing” (Friston, 2019) and cor-
responds, in biological systems, to the maintenance of homeo/allostasis 
(Friston, 2013). To place this in the current language, the internal dy-
namics HS, and in particular, the QRF hierarchy that it implements, can 
in this case be regarded as a GM of the behavior of E, specifically, of the 
action of E on the MB. 

We have also shown previously how producing “copies” of itself that 
cluster in the local environment is a viable strategy for a system to 
reduce VFE (Fields and Levin, 2019). The copies shield the system from 
the open environment, reducing its unpredictability. The behavior of the 
copies is similar to the behavior of the system, thus increasing predict-
ability. While this model was formulated for biological cells and shows 
how multicellularity can be advantageous from the perspective of the 
FEP, it applies at larger scales as well, with ethnic, linguistic, or religious 
communities and social-media “echo chambers” as obvious examples. 

Here we take a different, but complementary perspective. The 
“environment” surrounding an open system is typically treated as pas-
sive: as a thermodynamic or material-exchange resource, an ambient 
field, or simply a heat bath. In the FEP literature, the environment is 
often just a source of uncertainty. For biological systems, this is clearly 
unrealistic: the environment of any organism is itself an evolved struc-
ture that includes products manufactured by other organisms, e.g. ox-
ygen, soil, and more recently, human artifacts. When all of life is 
considered one developing system, “the environment” becomes that 
system’s stigmergic memory (Fields and Levin, 2020b). At the scale of a 
single organism, the immediate environment consists largely of other 
organisms, both conspecifics and others. Similarly, the environment of a 
biomolecule consists largely of other biomolecules, the environment of a 
population consists largely of other populations, etc. These “others” are 
active agents pursuing their own agendas, as made explicit in 
game-theoretic models. 

The FEP not only allows, but when viewed in full generality, requires 
this game-theoretic perspective. The FEP applies to all systems with 
MBs, and describes all such systems as VFE-minimizing agents. The 
environment of any system shares an MB with that system, as made 
explicit in Fig. 2a. The environment E of any system S is, therefore, a 
VFE-minimizing agent. The sole source of VFE for E is S; any generative 
model implemented by E is, therefore, a generative model of S’s actions 
on its MB. To assume that E’s generative model is random – that E 
functions only as a heat bath or noise source – is thus to assume a very 
special case, one that is largely irrelevant to biology. The FEP thus ex-
tends and generalizes an insight of Lovelock and Margulis (1974), 
Maturana and Varela (1980), Rosen (1986), and many others: realistic 
environments are active agents, just as more typical systems of interest 
are. The capabilities of the environment as an agent depend only on its 
dynamics HE and hence are completely independent of decomposition as 
noted in §2.2; in particular, they are independent of its description by 
the system of interest using its QRFs, i.e. in terms of the objects 
perceived by the system. 

4.2. The environment acts so as to increase the system’s predictability 

When we consider E to be an active agent, the goal of its actions 
becomes clear: E acts to decrease its measured VFE; hence it acts to in-
crease the predictability, by its generative model, of S’s behavior. In 
particular, E acts to increase the predictability of S’s actions on its MB. 
Note that from E’s perspective, S’s behavior becoming increasingly 

predictable corresponds to S transferring less novel information to E and 
hence “losing freedom.” The rate of increase of S’s entropy, relative to E, 
thus decreases, though it remains positive since S still absorbs all waste 
heat generated by E, as discussed in §3.1 above. The considerations of 
the previous section apply equally to S and to E; to understand E’s ac-
tions on S, we must consider E’s information-processing capabilities, i.e. 
its hierarchy of QRFs. It is, in particular, important to understand 
whether E processes S’s actions on B as informative inputs and vice 
versa (Fields et al., 2022). 

A model in which S inserts “copies” of itself into E (Fields and Levin, 
2019) is effectively a model in which E deploys QRFs that “make sense” 
of S’s actions, as illustrated in Fig. 5a–c. From S’s perspective, the copies 
are components of E – or more precisely, the behaviors of the copies are 
components of the behavior of E, as measured by S at its MB – that are at 
least partially predictable and hence “make sense” to S. As the number of 
copies increases from zero (Fig. 5a) to one (Fig. 5b) to many (Fig. 5c), 
the behavior of E as a whole becomes progressively more predictable by 
S. Hence it is advantageous, from an FEP perspective, for S to insert 
copies of itself into E (Fields and Levin, 2019). The same, however, is 
true for E: as E gains copies of S and hence incorporates their QRFs, the 
behavior of S becomes more predictable for E. As noted earlier, this 
symmetric dynamic becomes obvious when we consider the QRFs that 
implement human language understanding or other sociocultural prac-
tices. A company E, for example, can predict the behavior of its customer 
S much better if it includes employees C that speak S’s language. 

We have thus far considered the interaction HSE and the boundary B 

between S and E. We are, however, free to pick any boundary in the joint 
system SE that we like, provided only that it functions as an MB in 
rendering the states of the two systems that it separates mutually 
conditionally independent. Let us suppose, therefore, that the boundary 
B

′

shown in Fig. 5d meets this condition. Drawing this boundary defines 
a system S′ – which includes S – that is inside B

′

, and an environment E′

that is outside B
′

. The two interact, at B
′

, via an interaction HS′E′. All of 
the previous considerations apply to this new interaction. We can now 
consider the consequences of S inserting copies of itself into S′, i.e. into 
the interior defined by the boundary B

′

, as shown in Fig. 5e and f. Doing 
this has the consequences for S’s predictive capability discussed above. 
Here, however, we will be interested in its consequences for the pre-
dictive capabilities of S′ and E′. 

When the boundary is moved from B to B
′

, some degrees of 
freedom of E become degrees of freedom of S′; hence E′ has fewer degree 
of freedom than E, and therefore less computational power than E. Any 
QRFs of E that directly measured bits encoded on B , in particular, are 
lost in the transition from E to E′. However, because B

′

by construction 
functions as an MB, the states of S′ are conditionally independent of the 
states of E′. In this case, E factors as E = E′ ⋅ (S′ \ S), where ‘\’ denotes set, 
or more properly state-space subtraction. Any QRFs implemented by S′ \ 
S that measure states of B , therefore, can be viewed as writing their 
outcome values on B

′

. We can, therefore, view B
′

as a coarse-graining 
of B . Indeed, this construction implements the idea of “MBs within 
MBs” (Kirchhoff et al., 2018). 

This construction underscores an important point, one relevant to 
some criticisms of the applicability of the FEP to biological systems. 
When a cell, for example, divides, it does not lose its MB. Its environ-
ment, however, changes; hence its interaction with its environment 
changes. The joint system comprising the cell and its daughter can also 
be regarded as a “system of interest” with its own MB, one that is sub-
stantially larger that the MB of the original cell. With sufficient di-
visions, the MB of the developing multicellular system may wholly 
contain the MB of the original cell, together with many other MBs sur-
rounding pairs, triples, or other collections of component cells. Each of 
these MBs defines a different system, a different environment, and a 
different system-environment interaction. The MB of one’s liver, for 
example, supports a very different interaction than the MB of one’s 
brain. Understanding a whole organism’s interaction with its 
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environment – as defined at the whole organism’s MB – requires also 
understanding the interactions defined at all of the MBs within the or-
ganism: behavioral biology requires physiology. This is not a reduc-
tionist view: understanding the interactions between the parts and their 
environments is a necessary, but not a sufficient, condition for under-
standing the interaction of the whole with its environment. It is rather an 
integrative, systems-biology view: the hierarchy of MBs within the or-
ganism specifies the loci of the internal interactions that both enable the 
whole organism’s interaction with its environment and enable that 
interaction to be understood. 

A particular example of the above construction is familiar, and has 
been studied in detail. Suppose S is a system of interest, E′ is an observer, 
e.g. a human observer, and S′ \ S is an ambient field, e.g. the ambient 
visible-frequency photon field. In this case, the QRFs implemented by S′

\ S that measure B are light-scattering interactions that encode prop-
erties of S, e.g. size or shape. The scattered light impacts E′ at the 
boundary B

′

, transferring the encoded information about S to E′. The 
resolution of the encoding is decreased by a factor proportional to the 
ratio of the areas of B and B

′

; the transfer process thus implements a 
coarse-graining. Clearly, this coarse-graining information-transfer pro-
cess is simply the standard classical-optics mechanism of visual 
perception. Such environment-mediated measurement has been studied 
in general under the rubric of “quantum Darwinism” (Zurek, 2003, 
2009). It depends critically on boundaries that impose conditional in-
dependence at both B and B

′

. 
Given this conditional independence condition, we can write HE =

HE’ + HS′\S, where HS′\S implements QRFs transferring information be-
tween B and B

′

and HE’ implements QRFs outside B
′

. The condition 
that allows drawing B

′

is separability: B
′

must function as an MB that 
renders E′ conditionally independent of S′. The interaction between E′

and S′ must, therefore, be effectively classical; any QRFs of E that cross 
the new interaction boundary B

′

must include a classical interface – 
effectively, an application-programming interface (API) – at B

′

that 
prevents sharing quantum coherence across B

′

. Under these conditions, 
drawing the boundary B

′

has no effect on HE and hence no effect on E’s 
QRF hierarchy. The component E′ therefore “knows” exactly the same 
things about S in Fig. 5a and d; Fig. 5d simply makes the boundary B

′

explicit. The same equality must, in this case, hold between what E′

knows about S in Fig. 5b and e, and in Fig. 5c and f. What is going on 
inside B

′

does not change the E′-S′ interaction in any of these pairs of 
situations. 

What, then, is the effect of the copies C filling up S′ \ S from the point 
of view of E′? What is the difference, for E′, between Fig. 5d and f, or 
between Fig. 5a and c? The copies C add their own QRFs to S′ \ S. These 
QRFs transfer information about S to E′, and also transfer information 
about E′ to S as discussed in Fields and Levin (2019). The area, and hence 
the coding capacity, of B

′

does not change as these additional QRFs are 
inserted into S′ \ S. The boundary B

′

must, therefore, encode a 
convolution, which for simplicity we can take to simply be an average of 
the outcomes written by the QRFs contributed by the multiple copies C. 
These outcomes are likely to be similar, since the C are all copies of S, 
but in general they will not be identical. Hence in general, B

′

imple-
ments a further coarse-graining of information about S in Fig. 5f 
compared to 5d, or between Fig. 5a and c. Transfer of information 
through an ambient medium again provides a familiar example of this 
coarse-graining effect. Listening to a radio, or a conversation, in a quiet 
room can be a low-noise, high-resolution experience. Adding multiple, 
inexact copies of the radio, or of the conversation, inevitably increases 
noise and decreases fidelity. 

While coarse-graining increases noise, it also decreases uncertainty if 
the resolution of measurements is also decreased. This is achieved by 
deploying QRFs that measure relatively low-resolution “macrostates” in 
place of high-resolution microstates (Hoel et al., 2013; Hoel, 2017). 
From the perspective of E′, therefore, filling up S′ \ S with copies C of S 
decreases VFE, and therefore increases predictive power, provided E′’s 
QRFs are lower-resolution than E’s QRFs. This is the case whenever E’s 
QRFs are hierarchies that cross B

′

: in this case, E′’s components of the 
hierarchy automatically coarse-grain E’s complete QRF. Neurons are 
structured so as to take advantage of such coarse graining (Fields, Gla-
zebrook and Levin, 2022). Coarse-graining and hierarchical structure 
further increase predictive power if the copies C are diverse, as the 
coarse-graining imposed by B

′

will “wash out” the details written by the 
C more if they are writing more diverse outcomes. Hence we have a 
rather surprising conclusion: 

Fig. 5. a) A system S interacts with its environment E 
as in Fig. 2a. b) S inserts a “copy” C of itself into E. 
The copy brings new QRFs to E, increasing E’s pre-
dictive power. c) S inserts multiple copies of itself into 
E, as in the model of Fields and Levin (2019). d) A 
boundary B

′

can be drawn anywhere in E. Provided 
the states inside and outside B

′

are mutually condi-
tionally independent (i.e. B

′

functions as an MB), 
drawing this new boundary defines new systems S′

(inside B
′

and containing S) and E′ (outside B
′

, the 
remainder of E). e) S adds a copy C of itself to S′. f) S 
adds multiple copies of itself to S′.   
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The FEP will drive the peripheral environment E′ around any system 
S to act on S so as to enable or facilitate the insertion of diversified 
“copies” of S into S’s immediate environment. 

The FEP, in other words, drives the environment around any 
“interesting” system to enable both the replication of that system and the 
self-organization of the replicates into a “body” surrounding the system. 
Self-organization is, therefore, environmentally-driven under the FEP. 

4.3. Environmental driving facilitates both the origin of life and its 
diversification 

The surprising conclusion above becomes unsurprising when we 
consider it in the case of either animal or plant reproduction: germ cells 
are intentionally enclosed in microenvironments – seeds, eggs, a uterus – 
that facilitate their replication and the self-organization of an embryo. 
The “correct” microenvironment is generally essential to the success of 
the self-organization process. 

The same is obviously true in bioengineering and artificial life con-
texts; here the “environment” in the form of the human experimenter 
provides both the materials and the microenvironment required for self- 
organization. Here as in all curiosity-driven experimentation, the goal of 
the experimenter-as-environment is to increase future predictive power, 
i.e. to decrease future VFE. Both the rate and extent of the decrease 
depend on the complexity of the engineered system, particularly on the 
complexity of its QRFs. Machine learning (ML) systems, for example, are 
designed to generate their own QRFs that encode their accumulated 
experience. Systems such as AlphaFold (Jumper et al., 2021) and 
AlphaCode (Li et al., 2022) exhibit surprising (and surprisingly useful) 
behavior; this potential for surprise generates the “explanation problem” 
– a problem of how to reduce experimentally-elevated VFE – in AI 
(Arrieta et al., 2020; Samek et al., 2021). Future hybrid and chimeric 
systems that incorporate biological “parts” are expected to generate 
even more challenging explanation problems (Levin, 2022). 

Bioengineering and artificial life contexts highlight the environ-
ment’s ability to “take over” the task of replication, providing the copies 
C that are needed and sometimes actually inserting them into the im-
mediate microenvironment of the system. In the case of kinematic 
replication of xenobots, for example, the environment provides the 
needed supply of dissociated X. laevis skin cells (Kriegman et al., 2021). 
The environment also provides the “parts” in naturally-occurring cases 
of affiliative aggregation, from Dictyostelium sporulation or the forma-
tion of multispecies microbial mats to the replication of symbiotic sys-
tems, including all holobionts (Guerrero et al., 2013; Gilbert, 2014a; 
Bordenstein and Theis, 2015). As humans are holobionts, our own 
reproduction is environmentally assisted; while the core microbiota is 
transferred from the mother at birth (Gilbert, 2014b; Coscia et al., 
2021), further components are added by the environment – including 
the nursing mother – after birth, and indeed throughout the lifespan. 

Viewed more broadly, the environment provides the parts in every 
case of biological or biochemical replication, in the form of molecular 
subunits to be assembled by an essentially kinematic process. Replica-
tion of DNA – the fundamental “replicator” in the gene-centric neo- 
Darwinist view of both evolution and development (Dawkins, 1984) – is 
an environmentally-driven process: the environment provides the 
nucleic acids, the enzymes, the free energy, and the biochemically and 
thermodynamically stabilized compartment required for the kinematic 
process. Why? From an FEP perspective, the environment does these 
things to increase future predictability. Making more of the same kind of 
molecule generates a more predictable future state than making a 
random assortment of molecules. 

The environment similarly provides both parts and a stabilized 
microenvironment in origin-of-life models (Cornish-Bowden and 
Cárdenas, 2017; Bartlett and Wong, 2020). The FEP suggests that it does 
this for the same reason that it does this in the case of DNA replication or 
organismal reproduction: to increase its future predictive power. Living 

systems localize, organize, and coarse-grain information. From the point 
of view of the environment, this compartmentalization reduces VFE. 

As discussed in Friston (2019) and Fields et al. (2022), the classical 
limit of increasing predictive power is generalized synchrony between 
system and environment: each predicts the other’s future actions 
perfectly. Achieving this limit, clearly, requires evenly-matched 
computational power, and hence both behavioral and computational 
capabilities, on each side of the system-environment boundary. “Small” 
organisms – e.g. microbes – compensate in part for their relatively 
limited computational power by limiting the sizes, and thus the infor-
mational bandwidths, of their MBs. If most environmental variation is 
invisible, the task of predicting what is visible becomes easier. Humans 
represent an opposite extreme, as we continually expand the informa-
tional bandwidths of our MBs by developing new observational tech-
nologies. This activity – science – increases our VFE and hence the 
predictive demands placed on our cognitive systems. Rendering the 
environment more predictable does not, however, render it less com-
plex; it rather requires that our predictive models – our GMs – become 
more complex. A limiting scenario of generalized system-environment 
synchrony can involve arbitrarily large (but of course finite) 
complexity on both the system and the environment side. Human evo-
lution itself is a microcosm of this process: the increasing complexity of 
primate, and then human, social interactions are widely acknowledged 
to have co-evolved as an “arms race” with the increasing complexity of 
primate, and then human, cognition, including such cognitive com-
plexities as language use, extensive environmental manipulation, and 
culture (Adolphs, 2003, 2009; Dunbar, 2003; Dunbar and Shultz, 2007). 
Predicting the outcomes of such arms races would require detailed 
models of both the perception/action capabilities (i.e. the QRFs) and the 
computational capabilities of both the components and their shared 
environment. This is particularly true in cases in which the multiple 
components of a complex system, e.g., a population or an ecosystem, 
may have conflicting goals. 

5. Conclusion 

We have seen here how the FEP provides a generic model of MCAs 
that applies equally to natural and engineered systems and equally to 
short and long timescales. Indeed the FEP erases the distinction between 
natural and engineered systems. Because the FEP characterizes the 
environment of any system of interest as an agent, the environment can 
always be regarded as “training” or “engineering” the system. The 
ubiquitous role of the environment in providing the parts required for 
replication, whether of DNA molecules, cells, evolved or constructed 
organisms, or completely artificial, abiotic systems, demonstrates this 
engineering aspect. When the environment is seen as an engineer, it 
becomes clear that “self-organization” is always environment-assisted 
self-organization. The product of any such process, the FEP tells us, 
serves to decrease the environment’s measured VFE, and hence in an 
important sense serves the environment’s goals. 

This view of the environment and its interactions with living systems 
significantly broadens the usual concept of what is “normal” or “typical” 
in biology. Xenobots and chimeras become exemplars, not oddities. It 
also becomes clear that the environment encodes “target morphology” 
in the form of VFE reduction criteria all the way down. In both evolution 
and development, and in origin of life scenarios, the environment as-
sembles a bunch of likely parts to see what happens. Life is a successful 
outcome of an experiment performed by the environment. 

Why would an environment assemble parts to create a living system, 
and then assist in its replication? The FEP suggests a simple answer: the 
environment is an agent that creates novelty in order to see what in-
formation it can get in return. The environment is a typical active 
inference agent. It behaves like any such agent behaves, limited only by 
the free energy it can obtain and the computational resources it can 
bring to bear. 

This way of thinking suggests an experimental strategy that has been 
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pursued, but never systematically: it suggests dissociating embryos or 
other collections of cells, of various different kinds, mixing them 
together in diverse, “multicultural” populations, and seeing how they 
behave in various environments. Can we make xenobot-like systems, for 
example, that are multi-origin chimeras? Can we make de novo symbi-
otic complexes, analogous to lichens, that have parts from very different 
lineages? Experiments along these lines would, in effect, be a kind of 
“recombinant biology”, analogous to standard genetic engineering, but 
carried out with cells, not genes. The success of recombinant genetics 
suggests that recombinant biology may work for cells in some “right” 
kinds of environments. The outcomes of such experiments could sub-
stantially increase the diversity of life beyond that supplied thus far by 
evolution. 
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